Overview
Do your product dashboards look funky? Are your quarterly reports stale? Is the data set you're using broken or just plain wrong? These problems affect almost every team, yet they're usually addressed on an ad hoc basis and in a reactive manner. If you answered yes to these questions, this book is for you.
Many data engineering teams today face the "good pipelines, bad data" problem. It doesn't matter how advanced your data infrastructure is if the data you're piping is bad. In this book, Barr Moses, Lior Gavish, and Molly Vorwerck, from the data observability company Monte Carlo, explain how to tackle data quality and trust at scale by leveraging best practices and technologies used by some of the world's most innovative companies.
- Build more trustworthy and reliable data pipelines
- Write scripts to make data checks and identify broken pipelines with data observability
- Learn how to set and maintain data SLAs, SLIs, and SLOs
- Develop and lead data quality initiatives at your company
- Learn how to treat data services and systems with the diligence of production software
- Automate data lineage graphs across your data ecosystem
- Build anomaly detectors for your critical data assets
While major retailers like Amazon may carry Data Quality Fundamentals (A Practitioner's Guide to Building Trustworthy Data Pipelines), we specialize in bulk book sales and offer personalized service from our friendly, book-smart team based in Portland, Oregon. We’re proud to offer a Price Match Guarantee and a streamlined ordering experience from people who truly care.
We’re trusted by over 75,000 customers, many of whom return time and again. Want proof? Just check out our 25,000+ customer reviews—real feedback from people who love how we do business.
Prefer to talk to a real person? Our Book Specialists are here Monday–Friday, 8 a.m. to 5 p.m. PST and ready to help with your bulk order of Data Quality Fundamentals (A Practitioner's Guide to Building Trustworthy Data Pipelines).