Overview
Table of Contents:
Chapter 1. Fourier series
1.1 Basic concepts
1.2 Fourier series and Fourier coefficients
1.3 A minimizing property of the Fourier coefficients. The Riemann-Lebesgue theorem
1.4 Convergence of Fourier series
1.5 The Parseval formula
1.6 Determination of the sum of certain trigonometric series
Chapter 2. Orthogonal systems
2.1 Integration of complex-valued functions of a real variable
2.2 Orthogonal systems
2.3 Complete orthogonal systems
2.4 Integration of Fourier series
2.5 The Gram-Schmidt orthogonalization process
2.6 Sturm-Liouville problems
Chapter 3. Orthogonal polynomials
3.1 The Legendre polynomials
3.2 Legendre series
3.3 The Legendre differential equation. The generating function of the Legendre polynomials
3.4 The Tchebycheff polynomials
3.5 Tchebycheff series
3.6 The Hermite polynomials. The Laguerre polynomials
Chapter 4. Fourier transforms
4.1 Infinite interval of integration
4.2 The Fourier integral formula: a heuristic introduction
4.3 Auxiliary theorems
4.4 Proof of the Fourier integral formula. Fourier transforms
4.5 The convention theorem. The Parseval formula
Chapter 5. Laplace transforms
5.1 Definition of the Laplace transform. Domain. Analyticity
5.2 Inversion formula
5.3 Further properties of Laplace transforms. The convolution theorem
5.4 Applications to ordinary differential equations
Chapter 6. Bessel functions
6.1 The gamma function
6.2 The Bessel differential equation. Bessel functions
6.3 Some particular Bessel functions
6.4 Recursion formulas for the Bessel functions
6.5 Estimation of Bessel functions for large values of x. The zeros of the Bessel functions
6.6 Bessel series
6.7 The generating function of the Bessel functions of integral order
6.8 Neumann functions
Chapter 7. Partial differential equations of first order
7.1 Introduction
7.2 The differential equation of a family of surfaces
7.3 Homogeneous differential equations
7.4 Linear and quasilinear differential equations
Chapter 8. Partial differential equations of second order
8.1 Problems in physics leading to partial differential equations
8.2 Definitions
8.3 The wave equation
8.4 The heat equation
8.5 The Laplace equation
Answers to exercises; Bibliography; Conventions; Symbols; Index
Written on an advanced level, the book is aimed at advanced undergraduates and graduate students with a background in calculus, linear algebra, ordinary differential equations, and complex analysis. Over 260 carefully chosen exercises, with answers, encompass both routing and more challenging problems to help students test their grasp of the material.
While major retailers like Amazon may carry Introduction to Partial Differential Equations (From Fourier Series to Boundary-Value Problems), we specialize in bulk book sales and offer personalized service from our friendly, book-smart team based in Portland, Oregon. We’re proud to offer a Price Match Guarantee and a streamlined ordering experience from people who truly care.
We’re trusted by over 75,000 customers, many of whom return time and again. Want proof? Just check out our 25,000+ customer reviews—real feedback from people who love how we do business.
Prefer to talk to a real person? Our Book Specialists are here Monday–Friday, 8 a.m. to 5 p.m. PST and ready to help with your bulk order of Introduction to Partial Differential Equations (From Fourier Series to Boundary-Value Problems).