Highly regarded for its exceptional clarity, imaginative and instructive exercises, and fine writing style, this concise book offers an ideal introduction to the fundamentals of topology. Originally conceived as a text for a one-semester course, it is directed to undergraduate students whose studies of calculus sequence have included definitions and proofs of theorems. The book's principal aim is to provide a simple, thorough survey of elementary topics in the study of collections of objects, or sets, that possess a mathematical structure.
The author begins with an informal discussion of set theory in Chapter 1, reserving coverage of countability for Chapter 5, where it appears in the context of compactness. In the second chapter Professor Mendelson discusses metric spaces, paying particular attention to various distance functions which may be defined on Euclidean n-space and which lead to the ordinary topology.
Chapter 3 takes up the concept of topological space, presenting it as a generalization of the concept of a metric space. Chapters 4 and 5 are devoted to a discussion of the two most important topological properties: connectedness and compactness. Throughout the text, Dr. Mendelson, a former Professor of Mathematics at Smith College, has included many challenging and stimulating exercises to help students develop a solid grasp of the material presented.
While major retailers like Amazon may carry Introduction to Topology (Third Edition), we specialize in bulk book sales and offer personalized service from our friendly, book-smart team based in Portland, Oregon. We’re proud to offer a Price Match Guarantee and a streamlined ordering experience from people who truly care.
We’re trusted by over 75,000 customers, many of whom return time and again. Want proof? Just check out our 25,000+ customer reviews—real feedback from people who love how we do business.
Prefer to talk to a real person? Our Book Specialists are here Monday–Friday, 8 a.m. to 5 p.m. PST and ready to help with your bulk order of Introduction to Topology (Third Edition).